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Abstract

A method for characterisation of materials subjected to large strains beyond the levels when plastic instability occurs
in standard tension tests is presented. Thin sheets of two types of hot-rolled steel are subjected to tension loading until
fracture occurs. The deformation process is captured with a digital camera and by digital speckle photography (DSP)
in-plane pointwise displacement fields are obtained. By numerical differentiation and assuming plastic incompressibility
the equivalent plastic strain is determined. The characterisation performed in this paper consists of estimating material
parameters in two constitutive models. These models are a piecewise linear plasticity model and a parabolic hardening
model. By using inverse modelling including finite element analyses (FEA) of the tension tests the material parameters
are adjusted to achieve a minimum in a so-called objective function. The objective function is basically a least-square
functional based on the difference between the experimental and FE-calculated displacement and strain fields. Due to
the large deformations an adaptive meshing technique is used in order to avoid highly distorted elements. The DSP-
technique provided measurements, where the uncertainty of the equivalent plastic strain varied between 0.0015 and
0.0056. The maximum obtained strain was approximately 0.8. The true stress—strain curves based on the estimated
parameters are validated in the low strain region by comparison with curves from standard tension tests.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Increased access to powerful computers at relatively low costs has made the use of computer aided
engineering (CAE) systems almost mandatory in the manufacturing industry. The finite element method
(FEM) is considered to be the most powerful tool within the CAE systems because it can handle large
degree of freedom simulations with a wide range of working conditions (Mori et al., 1995). FEM is a widely
used numerical simulation instrument in the field of metal forming processes.

The development of a new product in the metal forming industry is a process involving several steps.
Generally it involves design and manufacturing of a number of prototypes, both of the detail intended for
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production and of the forming tool to be used. The use of predictive engineering, or simulation, is a way of
reducing the number of prototypes needed and the time used for testing of the product when going from
concept to production. This is especially important for the prototyping of the tool, because it is generally
very expensive to manufacture several prototypes or to refine one already built (Adams and Askenazi,
1999).

Simulation of a metal forming process is a complex problem because the physical process involves highly
non-linear parts such as large material deformation, history dependent material behaviour and complex
contact phenomena. Recalling that a finite element analysis (FEA) is the solution of a mathematical model
of a structural behaviour, the implication must be that the solution is never more accurate than the model
permits. Using non-linear constitutive equations in a simulation causes some difficulties. First of all, most
non-linear equations describing material behaviour, although varying in complexity, are to some extent
very simplified approximations (e.g. elastic—plastic models used for modelling of metals during complex
stress paths). Also, elastic—plastic models are often used beyond the range of available data (Belytschko and
Mish, 2001). Still, even if a very complex model is used, the problem of determining the appropriate model
parameters exists and in order to get reliable results from a metal forming simulation, one important
prerequisite is that the material model is accurate. Here this means that the parameters in the chosen
constitutive model are estimated in the best possible way.

The most common way to evaluate the stress—strain relationship for a material is by performing stan-
dardised tension tests (ASTM Standard E8M-96, 1996). These tests require specimens subjected to a
homogeneous state of uniaxial loading. Typically, the specimens are long round bars or thin sheets with
rectangular cross-section subjected to tension loading in a common tension testing machine. According to
the standard mentioned above uniaxial strain is determined by using a so-called extensometer that measures
the extension of a certain gauge length. The relative extension, i.e. the fraction between the measured
extension and the gauge length, then gives a value of the uniaxial (engineering) strain. The shortcoming of
this testing procedure is that the assumption of uniformity is valid only until the maximum load is achieved.
Thereafter plastic instability and strain localisation will occur and the so-called diffuse necking starts. This
phenomenon might cause the specimen to terminate in fracture, but for thin sheet it is often followed by a
second instability process, namely localised necking. The difference between these two types of necking is
shown in Fig. 1, where the onset of diffuse necking occurs as a decrease of the width of the specimen. When
the later upcoming localised neck appears the width of the specimen decrease only slightly, but the thickness
along the necking band shrinks rapidly and soon thereafter fracture occurs.

If the strain is determined by using an extensometer according to ASTM Standard EEM-96 (1996), the
resulting value beyond the onset of necking will be an underestimation of the actual strain. Also, in
pressworking operations the strain can locally reach magnitudes significantly higher than what is possible
to obtain from a standard tensile test. Several methods (Bridgman, 1952; Ling, 1996; Zhang et al., 1999,
2001) are developed to correct and compensate for the necking occurrence in order to extend the region of
validity for the standard testing procedure.

Localised neck

Diffuse neck

Fig. 1. Different types of necking.
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Another possibility to extend the range of application for a material model is proposed by Ghouati and
Gelin (1998, 2001), where the FEM is combined with an optimisation algorithm. The general idea in the
papers is to use the forming operation which the material is subjected to in the parameter estimation
process. Adjustments of the material parameters in the simulation are made in order to get the calculated
response from the FEA to match the measured response (in a least-square sense) from the forming oper-
ation. However, this methodology is not applicable when a prototype of a forming tool is unavailable, i.e.
there is no physical large-scale or production forming process present for comparison.

The purpose of this paper is to suggest a method for determination of the stress—strain relationship that
is valid for strains above the levels restricted by the necking phenomenon in the standard testing procedure.
The method presented here is based on inverse modelling (Tarantola, 1987).

The basic approach in inverse modelling is to employ a so-called objective function that measures the
agreement between some experimental data and a numerical model, i.e. a finite element simulation. The
model describes the experimental response and is supplied with a particular choice of material parameters
in a constitutive model. The parameters are then adjusted to achieve a minimum in the objective function,
yielding best-fit parameters. The adjustment process is thus a problem of optimisation in many dimensions.
Using this method will in most cases provide a set of optimal parameters. The application of inverse
modelling is presented in, for example, Mahnken and Stein (1994), Faurholdt (2000) and Kajberg et al.
(2004).

In this paper, the experimental data is provided by tension tests of thin sheet specimens. The state of
deformation is quantified by an optical method, digital speckle photography (DSP), providing field
information for both in-plane displacements and strains. The demand of uniformity no longer has to be
fulfilled and furthermore, no correction method to compensate for the multiaxial stress—strain state in the
necking region is necessary.

In this work, the chosen constitutive models are: a piecewise linear plasticity model, and a parabolic
hardening model. Both models are employed in an implicit finite element (FE) code, MSC.Marc (2003).

2. Experiments
2.1. Specimen design

The DSP-method, which so far is designed to measure in-plane displacements implies that it is most
suitable for measurement on thin sheets, where the dominating displacement components are the in-plane
ones. The DSP-method is here used to capture the dramatically deforming region, where the necking oc-
curs, for thin sheet specimens. However, for specimens with uniform cross-section it is difficult to predict
where along the specimens the plastic instability starts and in order to achieve a good spatial resolution the
camera should be focused on the necking region. The specimens (Fig. 2) are therefore machined with a
narrow part in the middle, where the plastic deformations and the upcoming plastic instability are forced to
appear. The captured narrow region of a specimen is depicted as a shaded square in Fig. 2.

The materials, which are chosen in the investigation, are two hot-rolled steels, Domex 355 and Domex
650, with yield stresses of at least 355 and 650 MPa, respectively. The tests are performed in a common
tension testing machine, where the specimens are subjected to controlled displacements at rates of 0.025 and
0.0125 mm/s for Domex 355 and Domex 650, respectively. The time to complete a tension test, i.e. to load
the specimen until fracture, varied between 70 and 110 s. The longer times were required for the specimens
made of Domex 650. The loading forces are measured by the tension testing machine for further use in the
parameter estimation.

In order to validate the estimated material parameters standard tension tests (ASTM Standard ESM-96,
1996) are performed. Here, the specimens consist of thin sheets with thickness of 1 mm, width of 6 mm and
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Fig. 2. Specimen design. All numbers are in [mm].

a gauge length (part of the specimen with constant cross-section) of 32 mm. Four specimens of each
material, Domex 355 and Domex 650, are used in the standard tests.

2.2. Displacement and strain measurement through speckle photography

By using DSP it is possible to detect the complete in-plane displacement field of a specimen. Further, the
strain field can be evaluated by numerical differentiation of the displacement field data.

The most fundamental requirement for the DSP-method, that there exists a random pattern at the object
surface, is accomplished by using diffusely reflecting black and white spray paint. The randomness ensures
that any small region of the object surface is unique. By capturing the object surface with a digital camera
before and after the object has been subjected to some kind of displacement or deformation any small
unique region can be tracked by using a cross-correlation procedure (Sjodahl, 1994). In order to get field
data the object surface is divided into a large number of small regions, so-called subimages. In this case the
entire image of the object surface consists of 512x 512 pixels and the chosen sizes of the subimages are
16 x 16 or 32 32 pixels depending on their positions. The relative positions of their midpoints are depicted
in Fig. 3(a), which represents the initial grid configuration of subimages. The midpoints are separated by
approximately half the size of the subimages they are representing. The separation defines the spatial
resolution of the evaluated displacement field. Note that the subimages are placed tighter in the middle of
the specimen, where the neck, i.e. plastic instability is assumed to occur.

The cross-correlation procedure does not take into account any deformation or rotation of the sub-
images. This means that the subimages are not reshaped in order to take care of any strains or rotations in
the small regions they cover. In this specific case, when large deformations (i.e. high strain values) take
place, a new grid configuration is created by updating the positions of the subimages in the initial grid
configuration. The subimages are thereby given new positions for the next correlation by compensating for
their evaluated displacements. However, the speckle displacements and thereby the new coordinates for the



J. Kajberg, G. Lindkvist | International Journal of Solids and Structures 41 (2004) 3439-3459 3443

Initial grid configuration Final grid configuration
XXX X X K XK KX XX X X KKK KX
R X kA A A
KRR KX A X xR R KKK
Ao ool
XXX K XXk XX R RAK
100 PR R L L 100
PECERTRR Y
SRR EEE N,
SRR
OB
R R
200 EXAXXXEEXXXEXXRRRERR 200
(] XX XXX EEARXIERIRRXK (]
o RSO o
o XXXXXXXKXXX XX XX XXX X o
R XX R R
> 300 IR AR AR > 300
pbbdalol ol A
POt At
A R X
S
KKk X kK K x
PRoRoRoeleoRoRo oo oo
400 400
PRoRoRoeleoRoRo oo oo
XX XM xR XX XX XXX X
oo oo oo
XX XXX XK X XXX XX XXX
500 PR oo oo 500
() X [pixel] (b) x [pixel]

Fig. 3. Initial positions of the subimages (a). Final positions of the subimages (b). The crosses indicate the midpoints of the subimages.

updated grid are not integer numbers, which is necessary in the correlation procedure. Therefore, the
nearest pixel locations are chosen as basis for the next displacement evaluation. The introduced errors by
using the nearest pixel as basis are assumed to be negligibly small since the displacement field is smooth.

Up to 15 grid updates are used in the presented tests. The final grid configuration is shown in Fig. 3(b).
During the tension tests two pictures are taken every second. However, not all of the images are used in the
evaluation. Instead an iterative search algorithm is used to find the image resulting in an increment of 5% of
the maximum detected equivalent plastic strain. Therefore, field information regarding displacements and
strains is evaluated at equispaced strain increments instead of fixed time intervals. Two features can be
noted. Firstly, the field information is uniformly spread across the interval of the measured strains. If field
data instead is evaluated at fixed time intervals the strain with lower values would dominate in the sub-
sequent inverse modelling since the strain values increase more rapidly towards the end of the test com-
pared to the beginning. Secondly, every speckle displacement contains small random errors, which are
added for every evaluation step. The errors are discussed later. The choice of an increment of 5% is thus a
compromise between the decorrelation, which appear when the subimages become strained or rotated, and
the additive error corresponding to the displacement increments.

The displacement field contains all the information needed to calculate the in-plane strain and shear
components &, & and &,. By assuming plastic incompressibility also the out-of-plane (normal) strain
component ¢, is possible to deduce. The evaluation of the strain matrix is first described for a general case.

Due to the large displacements the true (logarithmic) strain definition is chosen for representation of the
strain state. In order to derive the true strain components the so-called deformation gradient matrix F has
to be considered. This matrix describes the relative spatial position of two neighbouring particles after
deformation in terms of their relative material position before deformation. The matrix takes the form

ox’
F= x (1)

where x refers to the initial (material) Cartesian coordinates and x’ describes the current (spatial) Cartesian

coordinates. Most of its components are directly determined by considering the experimental displacement
information.

In order to derive the true strain, F is decomposed into a rotation matrix R and a stretch matrix V (Bonet
and Wood, 1997) according to

F=V-R (2)
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The stretch matrix V can be expressed in terms of F by multiplying Eq. (2) with its transpose according to
F-FF=V.R-R".VI=V.V (3)

where the relations R = R™! and V' =V are used. By solving the eigenproblem for F - F" the following
relationships are easily obtained

F-F'=V.V=/imn] + nn} + 23nsn} = V = Jymn] + Jonpn) + Z;ngn) (4)

where 4; (i = 1,2,3) is an eigenvalue of V and n; is the corresponding eigenvector. The true strain is then
given by

¢ =InV = In ;mn] + In Jonzn} + In 3n3n} (5)

The deformation gradient matrix can be expressed in terms of the displacements u, v and w (x, y and z-
direction). The expression is given by

1_|_6z4 Qu Qu

ox oy 0z
_ v v v
F= o 1 +3 dy 0z (6)
ow ow ow
ox oy 1 + 0z

Only the in-plane components in the upper left 2 x2 submatrix are detected by the experiment technique
(DSP). But by assuming that the in-plane displacements u and v are constant through the thickness, i.e.
W — a” = 0, the incompressibility condition detF = 1 is simplified to

oz
ow 1 +& G
_ . — — ax ay
<1 + 62) detFp =1, Fyp < g; 1+ g_; (7)

The in-plane components of the strain matrix are obtained by solving the eigenproblem according to Eq.
(4) based on the two-dimensional description of the deformation gradient matrix F,p. The out-of-plane
strain component ¢, is finally derived by from Eq. (7) as

ow 1
=In <1+62> :ln(detF2D> (8)

The deformation gradients in Eq. (7) contain derivatives, which are approximated by differentials. Since
noise tends to get magnified by numerical differentiation, strains need to be calculated with some care.
Therefore a first-order Savitsky—Golay filter (Press et al., 1992; Kajberg and Sjodahl, 2003) is applied to the
displacement components u and v. This filter is basically a method to fit a plane to local data in a least-
square sense. The local data chosen in this experiment consist of displacement data for 3 x 3 square grids.
An example of such a square grid is shown in Fig. 4(a), where the nine data points are marked with circles.
The displacement component v for these nine points is marked with circles in Fig. 4(b), where the fitted
plane also is shown. The equations of the planes for each in-plane displacement component are

u=u+ UX+u,y (9)
V=0v4+vx+0,y
where u, =2 etc. u, u,, u, and v, v, v, are fitted data for the planes and these data are assigned to each of

the m1dpo1nts of the 3><3 square grids. These quantities inserted into F,p in Eq. (7) finally yields infor-
mation necessary to evaluate the strain components, &, &,, &. and the shear component &,,. Finally a slightly
modified expression for the equivalent plastic strain is defined as

sepf\/ (e2 4 +e&+26) (10)
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Fig. 4. Displacement field (a). Local displacement field (b).

Note, that the two unknown shear components are not considered. Later FE-analysis will show that this
strain expression is a good approximation of the common expression for the plastic equivalent strain since
the two excluded shear components are relatively small.

2.3. Uncertainties

As a measure of the reliability of the experimental results the uncertainties of the evaluated quantities are
used. These uncertainties are influenced by the arising errors corresponding to the speckle displacement
evaluation. Further, the regression model for the filtered displacement values in Eq. (9) affects the resulting
uncertainties.

As mentioned in the previous subsection every displacement evaluation step contains small errors. These
errors are dependent on the correlation values from the DSP-calculations and the size of the speckles and
the subimages (Sjodahl, 1997). Since the displacement state at a certain instant is determined by adding
incremental results from the DSP-evaluations the total error will be a consequence of errors corresponding
to all incremental displacement steps used. If the displacement increment errors ¢; are random and inde-

pendent the square of the total error at a certain instant m can be expressed in terms of a cumulative sum of
squared errors as

en = Ze? (11)

The relation between the total displacement error e, and the uncertainties of the filtered values of
displacements and strains are presented in detail in Appendix A. The resulting uncertainties are given by

s, = 5, = 0.333¢,
0.023e,, < s, <0.045¢,, (12)
where s, and s, are uncertainties in evaluated displacements u and v, respectively. The strain uncertainty s,

depends on the position for field data evaluation. The lower value corresponds to regions, where the
subimages are most separated and the higher value corresponds to the midpoint of the specimen.
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3. Constitutive models

Two types of constitutive models, which both are based on isotropic hardening, are chosen in order to
describe the strain hardening. The first model is a piecewise linear plasticity model based on five parameters,
where the first one is the initial effective yield stress oy and the other four define strain hardening moduli
(slopes) [Hi, H,, Hs, Hy] initiated at different equivalent plastic strain levels. The levels depend on the
material studied and are 0, 0.1, 0.25 and 0.6 for Domex 355 and 0, 0.075, 0.2 and 0.4 for Domex 650. The
second model is a parabolic hardening description, in which the effective stress g, according to von Mises is
given by

oe = A + By, (13)

where A, B and n are three material parameters. Finally, the elastic properties are given by Young’s
modulus £ = 210 GPa and Poisson’s ratio v = 0.3.

4. Finite element modelling

The numerical modelling of the experiments is based on finite element analysis (FEA). Due to the low
displacement rates inertia forces are neglected and the analysis is performed under static conditions. The
chosen FE-code MSC.Marc (2003) uses an implicit time integration scheme to solve the equilibrium
equations.

4.1. FE-mesh

Since the specimens are designed to achieve strain localisation symmetric along the horizontal (x-)axis
and the vertical (y-)axis only one 8th of specimens are modelled. In other words, the localised neck is
assumed to appear perpendicular to the loading direction and not inclined at an angle as in Fig. 1. The FE-
mesh consists of 3-D eight node brick elements with eight integration points. There are two elements in the
thickness direction and totally 512 elements are used in the entire mesh (see Fig. 5(a)). In order to model the
symmetries with all three coordinate planes, necessary boundary conditions are used. The controlled dis-
placement in the vertical direction, denoted v, is applied at the lower end of the modelled part of the
specimens (see Fig. 5(a)).

4.2. Adaptive meshing

The simulations of the experiments contain large deformation resulting in highly distorted elements,
which is associated to large errors. Therefore, some kind of remeshing has to be performed. There are a
couple of so-called adaptive meshing techniques at hand (Huerta et al., 1999). The adaptive procedure is a
tool for assessing the error of the solution and an algorithm to define a new FE-discretisation. Two different
approaches may be used to assess the error: error estimators or error indicators. The error estimators
approximate a measure of the actual error in a given norm. The norm can be based on the error criteria
concerning strain energy, effective stress, plastic strain, etc. The other approach, namely error indicators,
are chosen in a more ad hoc manner. Typical error indicators are for example that certain effective stress
or plastic strain levels indicate that a mesh refinement has to be performed. Note that the indicators do
not quantify the actual error, instead intuitive considerations control the mesh adaptivity. For all
approaches it is of importance to decide how frequently the mesh refinement should be performed. For a
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Fig. 5. FE-Mesh with applied boundary conditions and controlled vertical displacement (a). The mesh at the end of the simulation with
the adaptive refinements performed (b).

3-D FE-simulation one refinement generates eight new elements for every element that does not satisfy
the chosen error criterion. In practise the number of refinement steps has to be restricted in order to
limit the number of elements and thereby achieving reasonable computation times. For example, the
error criterion do not have to be checked for every increment, or only two or three refinement steps are
allowed.

The computation time is of great importance for the suggested method for parameter estimation since
the inverse modelling procedure implies a large number of simulations. Therefore the choice of adaptive
method is a compromise between the accuracy in the FE-results and the duration of the simulations. Here,
the error indicator approach is chosen and the number of refinement steps is limited to two. The indicator is
based on the equivalent plastic strain and the elements are refined when their plastic strain reach any of two
prescribed strain levels. The levels depend on which material is studied. For Domex 355 the levels are set to
0.25 and 0.5 strain. The corresponding levels for Domex 650 are 0.2 and 0.4 strain. The lower values for
Domex 650 are chosen because fracture occurs earlier for that material than for Domex 355. The mesh for
the last increment, when all refinement steps are performed, is shown in Fig. 5(b).



3448 J. Kajberg, G. Lindkvist | International Journal of Solids and Structures 41 (2004) 3439-3459

5. Inverse modelling

To describe the idea of inverse modelling the outline by Tarantola (1987) is appropriate: The scientific
study of a physical system M (e.g. the elastic properties of an anisotropic material, see Fig. 6) can be divided
into three steps. Firstly, a parameterisation of the system, which is a complete description of M using a
minimal set P of model parameters. Secondly, so-called forward modelling, which is finding the physical laws
that, with a given set of model parameters, predict measured quantities belonging to M. And finally, inverse
modelling, where measured quantities belonging to M are used for deducing the values of the model
parameters.

In the context of this work inverse modelling is used to estimate a set of parameters in a mathematical
model of a steel material, i.e. a constitutive model describing the material response to loading. In general,
the parameter values for the material model are not known and have to be determined based on experi-
mental data, v. If the model behaviour depends on a set of parameters x; €P, where k = 1,...,p and if an
error measure is defined, formulated as a least-square objective function, f(x;), describing the discrepancies
between the model approximation and the experimental data v, then the parameter estimation can be stated
as an optimisation problem (see e.g. Mahnken and Stein, 1997). Hence, the objective is to minimise the
error between data produced by the mathematical model y(x;) and experimental data v, according to

min f'(x;) = min

Z(Ui _yz‘(xk))2~ (14)

NS

Now, real experimental data is mostly accessible at discrete intervals (e.g. time or load steps) and the
model generated data must be transformed to the observation space of experimental data. Thus, the
resulting least-square function is discrete, as indicated above with i = 1,..., M as the number of experi-
mental points.

5.1. Objective function

A crucial point in inverse modelling is the choice of objective function. In this paper, the objective
function is a least-square functional with residuals based on the difference between experimental and FE-

Physical system M: Elastic homogenous solid

l

Parameterisation: Model
with 21 parameters

P = {Cijn}
(015 = Cijricr)

/ Measurable quantities \

(in principle): oy, e

Forward modelling Inverse modelling
Cijrr (and epy) oij and exg
4 4
Prediction of Deduction of
Oij Cijrl

Fig. 6. Scientific study of a physical system (illustration) according to Tarantola (1987).
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calculated data. The least-square criterion is justified based on the hypothesis that the sum of several
different contributions will tend to be normally distributed, irrespective of the probability distribution of
the individual contributions. This is often the case e.g. for measurement errors in the long run (Box et al.,
1978).

The experimental data consists of four quantities measured and evaluated at time instants ¢,. These are
the in-plane displacements u®?(%,) and v**(t,), the equivalent plastic strain Z"(¢,) and the loading force
F*?(t,), which all are used when the objective function is formed. However, the measured quantities are of
different physical dimensions and therefore some kind of normalisation has to be performed before sum-
ming all squares. Further, the influence of each quantity has to be tuned in order to get sum of squares of
the same magnitude. Therefore, all residuals are normalised by basically scaling them with the difference
between the maximum and mean value of the actual quantity. The sums of squares based on each indi-
vidual quantity were studied and mutually compared after the parameter estimations had been performed.
They were all of same magnitude. The objective function @ is given by

2

2
ﬁ: Nm uZXp(tm) uFE([m) N < UiXp(l‘ ) UFE(I ) )
TN =t | [0 (1) — P ()] |0 (1) . — [0S (2|
FE 2
eepn™P (b)) — Ecpht (L)

20" () e — 2™ (2|

M Fexp FF E ( b ) 2
Z Fexp| | [exp,mean |

—-p m=1

=00+ D, (15)

where p is the number of material parameters, &, is the number of measure points at a certain time instant
t, and M is the number of instants. Typical values of N,, and M are 627-703 and 11-15, respectively.

5.2. Interpolation of numerical field information

The DSP-algorithm used in the experiments for displacement and strain evaluation results in pointwise
field information with measure points according to the initial grid configuration shown in Fig. 3(a).
However, the displacement and strain data in the FE-calculation are associated to the node coordinates.
(MSC.Marc extrapolates the element strains from the integration points to the element nodes.) In order to
compare numerical data with experimental data the FE-results are interpolated to points that coincide with
the points in the initial grid configuration (experiment). The numerical values at the grid points are
determined by linear interpolation between the values of the three closest nodes (FE-model). In other
words, all grid points lie in triangular regions, where the nodes are the apex points. These triangular regions
are determined by the so-called Delaunay triangulation (Edelsbrunner, 2001), which creates a unique mesh
of triangles.
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5.3. Optimisation method

Different algorithms can be used to solve the optimisation problem (14), or more specific in this work,
minimisation of the function in Eq. (15). In general it is possible to categorise the algorithms in zero-order
methods, where only objective function evaluations are necessary (e.g. Simplex and Monte Carlo methods)
and first-order methods, with additional need for gradient evaluation of the least-square objective function
(e.g. Gauss—Newton and Levenberg—Marquardt).

The optimisation procedures in this work are performed with INVSYS (Wikman and Bergman, 2000),
an in-house programming system designed for analysis of inverse problems. A finite element analysis is used
as the direct problem and the input data (e.g. material parameters) are varied in an attempt to reach desired
output data from the analysis and thereby minimise the objective function value. The core of the system is
an optimisation algorithm, the unconstrained subspace-searching simplex method (SUBPLEX) (Rowan,
1990). The method uses direct search to find the minimum of the objective function, meaning that no
numerical or analytical estimate of the function derivative is necessary. Instead only the function value is
sequentially evaluated and compared to find optima (i.e. a zero-order method).

SUBPLEX is a generalisation of the Nelder—Mead simplex method (NMS) (Nelder and Mead, 1965)
which is an optimisation algorithm capable of minimising very noisy objective functions. However, NMS is
not computationally effective when the number of parameters is large. SUBPLEX therefore divides the p-
dimensional parameter space into subspaces of maximum five parameters and uses NMS with periodic
restarts to reach the optimum value for the objective function.

It is often necessary to infer some type of constraints to solve the optimisation problem. Two types of
constraints can be handled by INVSYS. Firstly, side constraints that are direct limitations on the model
parameters (e.g. lower and upper bounds) or some fixed relative value of a group of parameters. Secondly,
behaviour constraints on some solution variable in the direct problem (e.g. maximum stress or displacement
values in the direct problem FEA). Both types of constraints are handled by converting the constrained
problem to a sequence of unconstrained problems. This is done by adding a penalty function to the

objective function (Moe, 1973).

Numerical simulation

Y

Evaluate objective | g
function

Experimental data

Y

Optimisation

No

Yes

Fig. 7. Flow scheme for an inverse problem.
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Only the first type of constraints is used in the two chosen constitutive models. The piecewise linear
plasticity model is constrained to result in a monotonously decreasing slope of the stress—strain curve.
Hence, the strain hardening moduli follow H, > H, > H; > H, > 0. Further, the initial yield stress oy is
given a lower and upper bound. The bounds are 300 and 450 MPa, and 600 and 750 MPa for Domex 355
and Domex 650, respectively. The second constitutive model, the parabolic hardening description, is given
the following constraints.

Material Domex 355 Domex 650

Parameters A [MPa] B [MPa] n A [MPa] B [MPa] n
Lower bound 300 200 0.4 600 300 0.4
Upper bound 450 600 0.7 750 700 0.7

5.4. Parameter estimation

The iterative estimation procedure; FEA, objective function calculation and parameter optimisation is
controlled by user supplied interface programs, managing communication and interface between the uti-
lised program applications. Output from INVSYS after each iteration defines a new set of model param-
eters used for successive analysis of the direct problem. When a global minimum is found for the objective
function, the resulting parameters are considered as a best-fit for the model in question. The inverse analysis
is terminated either when a maximum number of (objective) function evaluations is reached or when the
change in parameter values during two subsequent function evaluations are less than a specified tolerance
(in this case 107%). The scheme from start to stop of an inverse problem is described in Fig. 7.

6. Results and discussion

The estimated parameters and the objective function values based on the two chosen constitutive models
are presented in Tables 1 and 2 for Domex 355 and Domex 650, respectively. As expected, the objective
function values @pwr corresponding to the piecewise linear plasticity model with five parameters achieved
somewhat lower values than the objective function @py corresponding to parabolic hardening model with
its three parameters. The results of the estimations are visualised as stress—strain curves in Figs. 8 and 9.
Further, stress—strain curves based on average values of the estimated parameters (last row in Tables 1 and
2) are depicted in Fig. 10. Note that the stress—strain relationships determined by the standardised tension
tests also are included in these figures. The curves corresponding to the two chosen constitutive models
show a good agreement with the standardised stress—strain curves. Further, the curves based on the

Table 1
Material parameters and objective function values for Domex 355
Spec. no.  Ppwr oo [MPa] H, [MPa] H, [MPa] H;[MPa] H,[MPa] &py A[MPa] B[MPa] n[l107}
[1071] [1071
1 4.63 395 1190 541 289 103 5.91 356 434 4.56
2 2.69 386 1400 592 123 107 4.82 355 447 4.15
3 2.76 398 1320 518 269 0.01 3.97 368 432 4.49
4 3.30 422 1310 414 248 0.10 5.04 432 387 5.44
5 7.48 403 1270 459 297 0.04 9.30 379 403 4.36

Av. val. 401 1300 505 245 42 378 421 4.60
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Table 2
Material parameters and objective function values for Domex 650
Spec. no.  Ppwr ao [MPa] H, [MPa] H, [MPa] H;[MPa] H,;[MPa] &py A[MPa] B[MPa] n[l07']
[10-1 [107]
1 4.04 672 1640 546 338 1.62 6.08 717 436 6.79
2 3.96 666 2060 689 411 0.74 5.52 655 517 4.44
3 5.77 655 2070 785 366 0.09 9.21 651 554 5.27
4 4.96 671 1670 522 412 0.08 7.07 706 441 6.42
5 3.66 651 2090 738 217 0.13 6.22 678 491 5.35
Av. val. 664 1910 656 349 0.53 682 488 5.65

piecewise linear plasticity model have almost no strain hardening at high strain levels. An inspection in Fig.
10 shows that the more simple parabolic hardening model with less parameters could not cover this lack of
strain hardening.

Domex 355 — Piecewise linear plasticity
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—— Specimen no. 1
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100 } —o- Specimen no. 3
% Specimen no. 4
V' _Specimen no. 5
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
(@) True plastic strain,e ¢, [m/m]
Domex 355 — Parabolic hardening
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Fig. 8. Stress—strain curves for Domex 355. Curves for the piecewise linear plasticity model (a). Curves for the parabolic hardening
model (b).
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Domex 650 — Piecewise linear plasticity
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Domex 650 — Parabolic hardening
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Fig. 9. Stress—strain curves for Domex 650. Curves for the piecewise linear plasticity model (a). Curves for the parabolic hardening
model (b).

The equivalent plastic strain presented in Figs. 8-10 are limited by the maximum measured strain,
namely the strain at fracture. These strain values are presented in the table below, where Domex 355 ap-
pears to be the more ductile material.

Material Domex 355 Domex 650
Spec no. 1 2 3 4 5 1 2 3 4 5
32;““““ 0.76 0.76 0.70 0.75 0.78 0.55 0.60 0.55 0.55 0.60

The time to accomplish a parameter estimation depends on the time to complete a FE-simulation and
the number of iterative steps in the optimisation procedure. More iterative steps were necessary for con-
vergence of the parameters corresponding to the piecewise linear plasticity model. The computation time
was about 150 s and 356-808 steps and 118-191 steps were needed for the piecewise linear plasticity model
and the parabolic hardening model, respectively. Thus, the average time to accomplish a parameter
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Fig. 10. Stress—strain curves for each constitutive model based on mean values of the estimated parameters. Stress—strain curves for
Domex 355 (a). Stress—strain curves for Domex 650 (b).

estimation was approximately 6 and 23 h, respectively. The FE-simulations was performed on a PC with a
1.9 GHz processor.

As mentioned in Section 2.2 a modified equivalent plastic strain was defined according to Eq. (10). It was
implemented in MSC.Marc and the FE-analyses showed only a small discrepancy between this strain
measure and the common equivalent plastic strain with all shear components included. The largest relative
discrepancy of 1% appears in the necking region for the last instant. For earlier times no significant dif-
ference is obtained. The modified strain measure is concluded as a good approximation of the common
measure for equivalent plastic strain.

The uncertainty analysis resulted in displacement uncertainties increasing with respect to the evaluation
step as a square root function from approximately 0.47 to 1.7 um. The same behaviour is obtained for the
equivalent plastic strain with uncertainties in the interval from approximately 0.0015 to 0.0056.

In order to illustrate the coincidence between the experimentally determined quantities and FE-calcu-
lated quantities, the strain fields for some instants are presented in Fig. 11. The fields correspond to
specimen no. 1 of the Domex 355 steel, where the FE-calculated fields are based on the piecewise linear
plasticity model. The experimentally determined strain fields are placed to the left, while the FE-calculated
fields are shown to the right. By comparing the fields corresponding to the different occasions the same
general appearance during the deformation process can be seen.

The presented parameter estimation is based on the objective function according to Eq. (15), where all
measured quantities are used. Other functions were also tested. For example, an objective function without
the force response, i.e. ® = @, was tried. The subsequent optimisation resulted in parameters that gave
very incorrect stress—strain curves, where the initial strain hardening was very high. Thus, the FE-calculated
plastic strain never reached the levels beyond the strain when necking occurs in standard tension tests. A
comparison between the measured force F** and the calculated reaction force FF® also showed that FTE
achieved much higher values. However, constitutive modelling without any force correlation is question-
able and the discussion above demonstrates the weaknesses.

A more interesting objective function considering statistical foundations is the so-called chi-square
formulation, denoted y2. Typical for y? is that the residuals, i.e. difference between experimental data and
numerical data, are weighted with the variances corresponding to the experimental data. Thereby, more
accurate experimental data is given higher importance. An example of a y2-function, based on the quan-
tities and parameters defined in Eq. (14), is given by
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11.5s

0

Fig. 11. Strain fields for specimen no. 1 (Domex 355). The experimentally determined fields are placed to the left. The FE-calculated
ones are placed to the right. Note the different strain scales.
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where s%i is the variance of v;. Further, the y*-function provides a statistical measure of goodness-of-fit. As
long as the squared residuals [v; — y;(x;)]> have values below their variances s?i the chosen model with
corresponding parameters describes the physical system well. A rule of thumb is that a “typical” value of y*
for a “moderately” good fit is approximately equal to one. The DSP-algorithm provides the variances for
the displacement and strain data. The variances are namely the square of the uncertainties estimated in
Appendix A (Uncertainty analysis) and presented above. However, the y>-formulation is not implemented
in this paper because the numerical data, i.e. the FE-calculated quantities, are subjected to discretisation
errors, which are difficult to estimate. It is assumed that these errors are larger than the experimental errors
and the y?>-formulation is therefore rejected for the present.

7. Conclusions

A method for characterisation of materials subjected to large strains is presented. Material parameters in
two types of constitutive models are estimated by inverse modelling, where a least-square functional is
minimised. The least-square functional, denoted objective function, is based on the difference between
experimentally and numerically determined field information provided by the DSP-technique and FEA,
respectively.

The implemented adaptive meshing conditions in MSC.Marc worked well and a good compromise
between a short computation time and a FE-mesh with not highly distorted elements was fulfilled.

The choice of objective function gave a good balance between the influence of the measured quantities.
However, the rejected y*>-formulation discussed in the previous section has advantages, e.g. the goodness-
of-fit measure, that attracts to further investigation and evaluation.

With the presented methodology for field measurement the development of strain is tracked from initial
plasticity to fracture. Since it is possible to detect the strain state at fracture the full-field measurement
might be of interest in for example damage mechanics. Furthermore, when obtaining so-called forming
limit diagrams (FLD) by biaxial tension testing the DSP-method might be useful in the determination of
essential quantities, namely the principal strains. A common technique for detecting strains for FLD is by
etching a regular texture on the surface of the specimen. However, the speckle method has the advantage
that it does not effect the material, which is the case when etching is performed.

The presented method is here used for an isotropic material but it also seems likely that characterisation
of anisotropic materials would function well.
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Appendix A. Uncertainty analysis

In order to estimate the uncertainties of the quantities u,v and e, the regression model for fitting
displacement data to planes has to be studied. The regression model for the second equation in Eq. (9) is
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shown in Eq. (A.1) below. A similar model is used for the first equation in Eq. (9). However for simplicity
the following analysis is made for the vertical displacement component, v.

vV =Xp+e (A.1)

v is a 9 x 1 vector of expected values for the displacement component v in the nine points of one of the 3x3
grids. X is the 9x 3 matrix of the so-called independent variables given by

1 Axp An
1 A.X'Z Ayz
3 6 9 1 Ax; Ay
(2))( 3.3 CSDX 6:Y6 ?x 9.9 1 Ax 4 Ay4
x=[1 0 o (A2)
CIDXZ-,}'z 9)65&5 9-’(80’8 1 Axe Ay
Ox1-,y1 OX4~.,V4 OX7~)/7 1 Ax; Ay7
1 Axg Ay
1 Axg Ay

where column 2 and 3 consist of the pixel coordinates relative the midpoint (xs, ys), i.e. Ax; = x; — x5 and
Ay; =y — ys, where i = 1,...,9. Further, the 3x 1 vector, B, is a vector with the quantities (v, v,,v,) for the
fitted plane. Finally the 9x1 vector e contains independent normal distributed experimental errors. The
quantities v, v, and v, are determined by taking the least-square estimate, b, of  (Box et al., 1978) as shown
in Eq. (A.3).

v
b= | v, | = X"Xx]'x" (A.3)

Uy

One way to estimate the uncertainties is by setting them equal to the corresponding standard deviations
of the quantities, v,v, and v,. Therefore, the variances of the parameters are calculated. The variance-
covariance matrix used in least-squares calculation is given by (Box et al., 1978)

Vb)=[X"X]"'e (A.4)

where e, is the displacement error at a certain instant m. Finally the standard deviations of the quantities
are calculated by taking the square root of the diagonal elements of V' (b).

AP Sl
S(b) = \/diag(V (b)) = /diag([X"X] ew <= [ 50, | = | 2 |e (A.5)
S,,yy S3

This uncertainty analysis is also performed for the displacement in the x-direction. That gives the same
values for the standard deviations as in Eq. (A.5). However, the standard deviations s,, and s, are related
to the engineering strains u, and v,,. For simplicity these standard deviations are also assumed for the true
strains ¢, and ¢,. In order to estimate the uncertainty for the strain value of interest ¢, the mean value of the
strain uncertainties above are used. Hence the uncertainties of u,v and &, are

u = Sp S
o) ()

For an approximately Gaussian-shaped correlation peak the displacement error e, (Sjodahl, 1997) is
related to the radius of the peak ¢ by
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where ¢ is the radius of the correlation peak, B is the size of the subimage and c is the correlation values.
The radius o is possible to estimate without deforming any specimen. A subimage is chosen arbitrarily for
every frame and by taking the auto correlation of the deviation of the intensity / the radius of the auto
correlation peak gives the g-value. The deviation is determined by Al =1 — (I), where (/) is the mean
intensity. A typical auto correlation surface Ry; and its correlation peak are shown in Fig. 12. Further, the
level curves for a region around the auto correlation peak is presented in Fig. 12(b), where also the radius is
marked. All frames from all experiments gave approximately the same value of the radius, namely four
pixels.
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